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ABSTRACT

A technique to derive large scale radiation divergence patterns
by combining direct measurements of radiation, satellite cloud data,
surface cloud observations and radiosonde observations is presented.
The technique is applied to the three BOMEX time periods selected
for the core experiment analysis and the resulting radiation divergence

values for the BOMEX array are given in tabular form.
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I. INTRODUCTION

The Barbados Oceanographic and Meteorological Experiment (BOMEX)
was carried out in the western Atlantic Ocean in the period 1 May - 31
July 1969 (Holland 1972, Holland and Rasmussen 1972). One of the prime
objectives of this observational program was to determine the vertical
and horizontal fluxes of mass, momentum, water and energy in a fixed
volume of the tropical atmosphere.

The tabulations of data and the results shown later in this report
are the contributions to the energy budget by the radiative components.
This paper describes the techniques used to derive the estimates of the
shortwave (.3-3 um) heating and longwave (3 ym - 100 um) cooling of
atmospheric layers. Production of a meaningful short time (24 hours)
average values of shortwave heating or longwave cooling is complicated
by the relatively few direct observations of the radiative components
for such a large volume. Infrared irradiance was observed at three
ships and the island Barbados; Suomi-Kuhn balloon borne net radiation
sondes [Suomi and Kuhn (1958)] were used to measure the individual upward
and downward infrared irradiances as a function of height. The frequency
of these observations was once per day. These data are summarized by
Kuhn and Stearns (1971). The net infrared irradiance at the surface was

measured by ships Rainier, Discoverer, and Rockaway, (Figure 1) using a

ventilated net radiometer and upward- and downward-looking shortwave
pyranometers. Measurements of shortwave heating were obtained from
aircraft equipped with pyranometers, however, these observations were
made on only twelve days and sampled relatively small areas. Table 1
Tists the aircraft missions by the NOAA Research F1ight Facility and NCAR

during the BOMEX experiment.
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Figure 1. - Fixed ship array during Periods I, II, and III.
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IT1. STRATEGY

From the direct observations of radiation mentioned above and other
peripheral data, estimates of the radiation components for the volume
defined by the BOMEX array, and the surface to 400 mb. layer were
constructed. It is immediately apparent from the sparsity of direct
radiation observations in both space and time that one cannot rely only
upon the measurements of the radiation parameters. Cox (1969) and Cox
et al (1970) recognized that such a mismatch between climatologically
oriented data gathering systems and shorter time and space scale studies
of weather phenomena was inevitable. The proposed solution was a
method which used an independent variable observed on a time and space
scale compatible with the requirements of the study. Such a strategy
has been adopted in this study.

The independent variable selected for use in this study is the
satellite cloud photograph. In the tropics, where air mass characteristics
are relatively uniform, clouds are the primary modulator of both short
and Tongwave radiation. For longwave radiation, clouds may even change
the sign of the divergence, causing infrared warming of significantly
deep layers of the troposphere (Cox 1969).

That clouds, and not variations in temperature and moisture, are
primarily responsible for variations of radiative heating in a tropical
atmosphere is clearly shown in Figure 2. Figure 2 is a comparison of
the root square deviation (RMS) of computations of infrared cooling
made from BOMEX rawinsonde temperature and moisture profiles collected
during the period 31 May - 9 June, 1969 and radiationsonde observations
of infrared cooling during the same period. The RMS deviation for the

calculated case, which contains no clouds, is as much as a factor of
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five less than the RMS deviation for the observed cases. The RMS error
of the radiometersonde instrument has been given by Johnson and Kuhn
(1966) as less than 0.25° C day']. Therefore, the dominance of clouds
in modulating the radiative heating structure of the tropical atmosphere
is readily apparent.

Satellite data coverage of the BOMEX data was the best yet attained
during any large meteorological field experiment. ESSA and vidicon
cameras gave one picture per day each. ATS III with its spin-scan
camera gave virtually continuous daytime coverage interrupted only by
scheduled ATS satellite communications functions. The NIMBUS III
satellite was also available during this period. The most useful
experiments from NIMBUS III for our purposes were High Resolution Infrared
Radiometer (HRIR), Medium Resolution Infrared Radiometer (MRIS),
Satellite Infrared Spectrometer (SIRS) and Infrared Interferometer -
Spectrometer (IRIS).

Conventional data utilized in this study were rawinsonde data and

surface observations of sky cover.



III. TECHNIQUE

A key component in this study is the determination of the dependence
of the divergence of long and shortwave net irradiances on clouds.
Figure 3 illustrates schematically the input and desired product of this
work. This section describes the technique used to transform the input

data into the desired product.

A. Infrared Cooling

A11 radiationsonde data given by Kuhn and Stearns (1971) were
subjected to the following procedure in order to detect the cloud
structure at the time of ascent.

1. The change of the upward and downward infrared irradiances as
a function of height for each radiationsonde ascent were compared to
the divergence calculated for a saturated water vapor atmosphere. If
the observed divergence exceeded the calculated by an amount greater
than the instrument error (.007 ly min'1) (Kuhn and Johnson 1966), the
layer was defined as cloudy. This procedure is described in more
detail by Cox (1969b).

2. The accompanying relative humidity profile for each radiation-
sonde ascent was examined. A threshold of rh>.85 was selected as evidence
of cloud.

3. Surface observations of sky cover were examined; ship precipi-
tation records were also consulted.

4. Gridded satellite photographs of the area before sunset or
after sunrise and also HRIR grid print maps from the nighttime NIMBUS

III satellite were consulted for evidence of cloud.
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Whenever three of the four above criteria were met, the sounding
was put into the appropriate category (Table 2) depending on the cloud
altitude; if there were no detectable clouds, the sounding was placed

in category III.

TABLE 2
CODE CATEGORY PRESSURE AT CLOUD ALTITUDE
I Low P > 750
I High P < 400

ITI Clear

After categorizing each sounding as explained above, all soundings
in a given category were averaged and a simple arithmetic mean cooling
rate for each 50 mb. layer was computed. The resulting mean cooling
rate profiles are shown in Figure 4.

The physical explanation for the curve representing clear conditions
in Figure 4 showing significantly less cooling than the high cloud case,
is that the high cloud cases were also often contaminated with scattered
or broken clouds in the trade wind layer. The clear condition, by
definition, excluded any such contamination and the resulting profile

shows less cooling in the 1000-900 mb. layer.

B. Shortwave Heating

Analagous to the infrared cooling, model shortwave heating profiles
were constructed for specific cloud conditions. The results of Roach
(1961) were used to estimate the clear shortwave warming distribution
with respect to height. These values were then biased by approximately
6% for pressure levels > 600 mb. in order to agree with the results of
Cox et al (1973). The in-cloud shortwave heating estimates were derived
using the method described by Korb and Moller (1962). Figure 5 shows

the profiles of shortwave heating used.
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C. Areal Distribution of Sky Cover

Satellite observations of clouds inherently contain several problems.
Those most acutely affecting our problem are the resolution limit of
satellite images, dependence on solar geometry cloud appesarance and cloud
height determination. We shall discuss these three problem areas in sequence.

The ATS III satellite spin-scan camera has a nominal resolution at
the sub-satellite point of 2.2 nautical miles. Since the horizontal
extent of many maritime trade cumulus clouds is less than 2.2 n.m., these
clouds do not appear as distinct white spots on satellite images but
instead, tend to raise the mean brightness level of the area. If one
establishes as a criterion for clouds a distinct "white spot", he will
tend to underestimate the cloud amount. However, if one selects a
scheme which recognized relatively large areas of slightly enhanced mean
brightness as being cloud cover, the amount of cloud cover will be
over-estimated. In this study, only clearly distinguished "white spots"
were interpreted from satellite images as clouds. As a result, the
cloud amounts deduced from the satellite data were consistently and
significantly lower than the surface reports. While one must not over-
Took the possibility that the surface estimates are too large (Young, 1967)
the Timiting definition of cloud stated above is primarily responsible for
the underestimate in this study.

Figures 6 and 7 show a comparison of surface-observed cloud cover
taken from ship reports in BOMEX and the satellite-deduced cloud cover
for the same times. These data are from a three month period, May,

June, and July 1969. Since the satellite data offer the only temporally
continuous and spatially complete representation of cloud data for the
BOMEX array, a linear correction factor depicted by the dashed line was

adopted to normalize the satellite-deduced cloud cover to surface
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observations. Actual cloud cover was assumed to be the product of the
satellite-deduced cover and the correction factor FC. If this product
were to exceed 1.0, the cloud amount was set equal to 1.0.

The appearance of a cloud on a satellite image is strongly dependent
upon the sun-cloud-satellite geometry. This is due to the angular
dependence of the cloud reflectivity. Acknowledgement of this uncertainty
led to the decision not to use the magnitudes of the cloud brightness as
an indication of either cloud type or cloud height. This effect also
accounts for the differences between the dashed, normalization lines on
Figures

In the absence of infrared satellite observations, the problem of
deducing cloud height from satellite data becomes qualitative and often
the result of indirect reasoning using parameters such as brightness,
movement, proximity to other clouds and the synoptic pressure analysis.
Instead of relying on indirect reasoning, ship observations of low and
total cloud cover were averaged for each ship over a three hour

period centered on the time of the satellite photograph.

L= 1 ) (hourly ship observations of Tow cloud amount) (1)
3 (hourTy ship observations of total cloud amount)

A partitioning factor, L, defined by Equation (1) was used to
partition the clouds into Tow and high categories. Since this technique
was intended to apply to undisturbed weather conditions, low clouds and
high clouds were assumed to be the dominant cloud features affecting the
radiative energy exchanges. This average vertical partitioning of clouds
was then applied to the corrected areal cloud cover deduced from the

ATS photographs in the proximity of the appropriate ships.
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The BOMEX array was divided into sixteen subareas of equal size
(Figure 8). For each of these subareas, the amount of cloud was estimated
from ATS satellite photos three times each day. Nimbus IIT HRIR data
were used when available for a single nighttime cloud determination.

After adjusting the satellite-observed cloud amounts and partitioning

the amount as a function of height as explained above, models of radiative
convergence and divergence (Figure 3) were combined proportionate to the
cloud amount of a given height regime. The profiles used have a maximum
vertical resolution of 50 mb. Fortunately, BOMEX objectives were
principally to study "undisturbed weather" so the periods of interest did
not contain complex cloud patterns.

Figure 9 is an illustration of the surface to 900 mb. net radiative
heating rate for June 6, 1969 as it was derived from the above techniques.
The radiative heating rate contours have been displaced northward from
their actual position over the BOMEX array so that the cloud pattern is

not obscurred.
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IV. RADIATIVE HEATING DATA TABULATIONS
This section presents the mean radiative heating for 50 mb. layers
for the entire BOMEX array. Similar values are available for each of
the sixteen subareas within the array; the values in the following
tables are simple arithmetic means of the subarea values for each time.
Radiative heating determinations were made three times per day:
at approximately 0900 LST, 1200 LST and 1500 LST. Comparison of
available night HRIR/MRIR cloud cover determinations with day time
cloud cover showed no advantage to making a separate nighttime infrared
cooling determination. The nighttime value of infrared cooling was,

therefore, assumed to be the same as the mean of the daytime values.
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DATE: May 11, 1969 BOMEX RADIATION DEPICTION

Pressure (mb) 1016 966 916 866 816 766 716 666 616 566 516 466 416

1657 LST
IR Cooling
Deg C/day -3.53 -2.92 -2.5%¢ =-2.27 -1.76 -2.18 -1.77 -1.74 -1.73 -1.61 -1.70 -1.63 ~-1.85

SW Warming
Deg C/HR .03 .03 .06 .06 .10 10 « 10 .10 .10 .10 .10 .09 .08

2017 LST
IR Cooling
Deg C/day -4,34 -3.43 -2.55 -2.28 -1.90 -2.29 -1.91 -1.72 -1.72 -1.56 -1.85 -1.73 -1.93

SW Warming
Deg C/HR .01 .01 .05 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

DAY AVG
IR Cooling
Deg C/day -3.93 -3.17 -2.5%6 -2.27 -1.83 -2.23 -1.84 -1.73 -1.73 -1.59 -1.78 -1.68 -1.89

SW Warming :
Deg C/day .28 .29 .66 .67 .91 .93 .93 .93 .93 .93 .94 .91 83

TOTAL SW + IR
Deg C/day -3.65 -2.88 -1.90¢ -1.60 -.92 -1.31 -.91 -.80 -.79 ~-.65 ~-.84 -.77 -1.05

—ZE‘_



Pressure (mb)

1555 LST
IR Cooling
Deg C/day

SW Warming
Deg C/HR

DAY AVG
IR Cooling
Deg C/day

SW Wakming
Deg C/day

TOTAL SW + IR
Deg C/day

1017

-3.01

.05

-3.01

.58

-2.43

967

-2.83

.05

-2.83

.58

-2.26

DATE:

917

-2.65

.08

-2.65

.94

-1.7

May 12, 1969 BOMEX RADIATION DEPICTION

867

-2.20

.08

-2.20

.98

-1.22

817

-1.49

.09

-1.49

-.39

767

-2.23

.09

-2.23

-1.13

717

-1.80

.09

-1.80

-.70

667

-1.86

09

-1.86

-.76

617

-1.72

.09

-1.72

-.62

567

65

.09

.65

.10

«5B

517

-1.73

.09

-1.73

-.63

467

-1.51

LB

-1.51

1.06

-.46

-1.85

.08

-1.85

.94

-.90

_EE_
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Pressure (mb)

1251 LST
IR Cooling
Deg C/day

SW Warming
Deg C/HR

1606 LST
IR Cooling
Deg C/day

SW Warming
Deg C/HR

2024 LST
IR Cooling
Deg C/day

SW Warming
Deg C/HR

DAY AVG
IR Cooling
Deg C/day

SW Warming
Deg C/day

TOTAL SW + IR

Deg C/day

1017

-2.27

.03

.07

.04

-2.16

55

-1.61

967

-2.50

.04

-2.41

.07

-2.44

.04

-2.45

57

-1.87

DATE:

917

-2.71

.05

.08

.05

07

June 22, 1969 BOMEX RADIATION DEPICTION

867

05

69

-1.46

-1

817

el

.05

w2 |

.09

24

.05

.24

N

.47

-2

-2.

-2.

767

.19

.06

.19

.09

"

=39

-1.

717

.06

wd 3

L9

13

.05

74

.80

.94

667

-1.94

.06

9

.06

.80

=1

-1.

617

s

.06

72

09

72

.06

.80

<92

567

.70

.06

72

.09

71

.06

71

.80

«91

517

-1.66

.06

-1.65

.09

-1.65

.06

-1.65

.80

-.85

-1

467

«38

.06

«3H

.08

=36

.06

.36

19

.58

-1

417

.80

.05

79

.08

79

.05

e

«73

_gs_



DATE: June 23, 1969 BOMEX RADIATION DEPICTION

Pressure (mb) 1016 966 916 866 816 766 716 666 616 566 516 466 416

1300 LST
IR Cooling
Deg C/day -3.40 -2.98 -2.61 -2.23 -1.63 -2.23 -1.82 -1.81 -1.72 -1.63 -1.76 -1.58 -1.86

SW Warming
Deg C/HR .02 .02 .05 +05 .05 .06 .06 .06 .06 .06 .06 .06 .06

1551 LST
IR Cooling
Deg C/day -2.84 -2.74 -2.66 -2.19 -1.46 -2.21 -1.78 -1.87 -1.72 -1.66 -1.71 -1.48 -1.83

SW Warming
Deg C/HR .05 .05 .07 .08 .09 .09 .09 .09 .09 .09 .09 .09 .08

2017 LST
IR Cooling
Deg C/day -2.84 -2.70 -2.65 -2.20 -1.48 -2.19 -1.76 -1.86 -1.72 -1.66 -1.69 -1.49 -1.82

SW Warming
Deg C/HR 23 ;03 .04 .04 .05 .06 .06 .06 .06 .06 .06 .06 .05

DAY AVG
IR Cooling
Deg C/day -3.03 -2.80 -2.64 -2.21 -1.52 -2.21 -1.79 -1.85 -1.72 -1.65 -1.72 -1.52 -1.84

SW Warming
Deg C/day 41 .42 .66 .68 79 .82 .82 <83 .83 83 .83 .81 .75

TOTAL SW + IR
Deg C/day

!
N

.62 -2.38 -1.98 -1.53 -.73 -1.39 -.97 -1.02 -.89 ~-.82 -.88 -.70 -1.09
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DATE: June 25, 1969 BOMEX RADIATION DEPICTION

Pressure (mb) 1016 966 916 866 816 766 716 666 616 566 516 466 416

1138 LST
IR Cooling :
Deg C/day -1.93 -2.35 -2.74 -2.13 -1.16 -2.18 -1.73 -1.99 -1.72 -1.73 -1.64 -1.32 -1.78

SW Warming
Deg C/HR .04 .04 05 .05 .05 .05 05 .05 05 .06 .06 .06 .05

1608 LST
IR Cooling
Deg C/day -1.72 -2.26 -2.75 -2.12 -1.10 -2.17 -1.71 -2.01 -1.72 -1.74 -1.62 -1.29 -1.77

SW Warming
Deg C/HR .07 .07 .07 .08 .09 .09 .09 .09 .09 .09 .09 .08 .07

1957 LST
IR Cooling
Deg C/day -1.72 -2.26 -2.75 -2.12 -1.10 -2.17 -1.71 -2.01 -1.72 -1.74 -1.62 -1.29 -1.77

SW Warming
Deg C/HR .04 .04 .05 05 .05 .05 .05 05 .05 .08 .05 05 .05

DAY AVG
IR Cooling
Deg C/day -1.79 -2.29 -2.75 -2.12 -1.12 -2.18 -1.72 -2.00 -1.72 -1.74 -1.63 -1.30 -1.77

SW Warming
Deg C/day .62 .64 .67 .69 2B s «718 .78 .79 .79 .79 77 .72

TOTAL SW + IR
Deg C/day -1.177 -1.65 -2.08 -1.43 -.36 -1.39 -.93 -1.22 -.93 -.95 -.84 -.52 -1.06
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